Advances in the fabrication of electric circuits has followed the advance of electricity and electronics.

Electricity: a form of energy resulting from the existence of charged particles (such as electrons or protons), either statically as an accumulation of charge or dynamically as a current. (easy today)

Introduction

Electronics: the branch of physics and technology concerned with the design of circuits using transistors and microchips, and with the behavior and movement of electrons in a semiconductor, conductor, vacuum, or gas. Conc

—Introduction

- Here are some goals of the project
- but the goal in education is clear: "Benefit the student"
- We can solve and simulate all we want but letting a student experience the response of a controller is far more effective
- summarize goals:
 - 1. Build a flight simulator
 - 2. Encourage faculty/student collaboration
 - 3. Boost interest in aerospace science

CET246 Electronic Design Automation LStatic Electricity

Static Electricity

"Electric charge is more useful (and interesting) when it moves."

-David J. Broderick, Ph.D.

Static Electricity

- This guy really knows what he's talking about.
- Make it do work
- Make it convey information
- We need two things:
 - 1. Something to move the charge (battery, generator, power plant, etc)
 - 2. A path for the charge to travel within (a circuit)

CET246 Electronic Design Automation Volta's Battery

The First Battery

- Now we can move charge
- connections large and easy to manipulate
- Circuits were simple

CET246 Electronic Design Automation Usolta's Battery

☐ The First Battery

- Better sense of scale from this drawing
- applications were limited, igniting black powder in this scene

Electric Light

- First widespread application of electricity
- Lead to need for more generation

CET246 Electronic Design Automation Light Bulb

Electric Light

- Downtown Manhattan
- Coal Fired
- served a few city blocks
- \bullet 508 customers/10,164 lamps
- 20 lights per customer

-Alternating Current

- As a young boy in (modern day) Croatia, Tesla dreamed of harnessing the power of Niagara Falls
- Had a vision of an AC motor, application more suited to industry,
- still large components
- A bit more complex
- still easy to interconnect

CET246 Electronic Design Automation Lack Tesla's Vision

Alternating Current

- AC being more efficient to distribute led to larger distribution areas
- Distance was/is much greater than the few city blocks Edison could serve

CET246 Electronic Design Automation Lack Tesla's Vision

__Alternating Current

• Led to our current (pun intended) means of distribution

CET246 Electronic Design Automation Tesla's Vision

-Propaganda War

• This was despite Edison trying to use scare tactics

-Propaganda War

- Tesla/Westinghouse fought back
- When is the last time you had to consider the Thevenin resistance of your wall outlet?

- The first Vacuum Tube
- Derived from the light bulb (kinda look alike, no?)
- Edison's lab observed the phenomena but didn't know what to do with it
- Fleming put it to use rectifying AC electricity into DC

- Old Scientist... for scale
- Additional grids inside the tubes allow for control of current leading to applications such as:
 - 1. Amplification
 - 2. Rectification
 - 3. Switching
 - 4. Oscillation
 - 5. Display

CET246 Electronic Design Automation Fleming's Valve

- used in analog circuits: radio rx/tx, television
- tubes are mostly obsolete now
- still used in some audio equipment
- Circuits became more complex
- still large enough for easy, albeit numerous, interconnects

2019-09-03

- Digital circuits began with tubes as well
- This is one of Forty panels of the first digital computer
- two additional function panels

CET246 Electronic Design Automation Fleming's Valve

- Backside of the panel
- a whole lot of tubes
- Very Complex, But HUGE! ie "easy" to construct
- Not reliable, only functioned about 50% of the time

CET246 Electronic Design Automation Shockley, Bardeen, and Brattain

__Semiconductors

- Shockley knew the theory, couldn't construct one
- Bardeen and Brattain built the first one working with Shockley
- Shockley eventually got his junction transistor to work
- Shockley usually gets most of the credit
- improved size and reliability
- still not commercially viable
- look at the screw heads for scale

CET246 Electronic Design Automation __TI's Transistor Radio

Commercialization

- Texas Instruments (TI) figured out how to manufacture transistors at scale
- Made radio receivers pocket-sized and battery-powered

CET246 Electronic Design Automation __TI's Transistor Radio

 \Box Commercialization

Regency TR-1 (1)

- Had two transistors
- one of the first commercial uses of a printed circuit board

Commercialization

- Complexity continues to increase
- size is decreasing
- interconnect more difficult, though no impossible by hand
- watch video (2 minutes) and look for:
 - method of interconnect
 - method of populating parts on the board
 - how soldering was performed
 - how testing was performed
- no more point-to-point, hand soldered components
- still manually populated (no pick and place robots yet)
- still manually tested (no bed-of-nails automated testing yet)

CET246 Electronic Design Automation —Sony's "Portable" Television

Commercialization

- 8 inch screen, 6V lead acid battery to make it portable
- 23 transistors (some Si, some Ge)
- 17 Diodes
- Notoriously unreliable

CET246 Electronic Design Automation Liby's Integrated Circuit

 \sqsubseteq Miniaturization

- first integrated circuit
- Components all in the same chunk of semiconductor
- interconnection between components external to semiconductor. So... almost there.
- 4 components
- Has two output states, related to oscillator, one-shot, flip-flop, and others

CET246 Electronic Design Automation __TI's Multivibrator

—Commercialization

- TI again led commercially available ICs
- Multivibrator (think: 555 timer)
- $\bullet\,$ Has two output states, related to oscillator, one-shot, flip-flop, and others

Miniaturization Continues

• Smaller transistors allow a more complex circuit to fit in the same space.

-Commercialization

· Size and physical form of parts · How are parts connected together?

- . How are parts placed for mechanical assembly?
- · How is soldering performed?
- How durable/reliable are components?

Commercialization

- We will examine many of these over the rest of the semester
- and a few others
- How can we build circuits?
- how are circuits manufacture?d
- how are parts/circuits tested?
- How reliable are our circuits?
- What environmental concerns are there?